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A first-order transition is numerically found in a spherical surface model with skeletons,
which are linked to each other at junctions. The shape of the triangulated surfaces is
maintained by skeletons, which have a one-dimensional bending elasticity characterized
by the bending rigidity b, and the surfaces have no two-dimensional bending elasticity
except at the junctions. The surfaces swell and become spherical at large b and collapse
and crumple at small b. These two phases are separated from each other by the first-order
transition. Although both of the surfaces and the skeleton are allowed to self-intersect
and, hence, phantom, our results indicate a possible phase transition in biological or
artificial membranes whose shape is maintained by cytoskeletons.
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1. INTRODUCTION

The so-called hop-diffusion of membrane proteins or lipids observed in cell mem-
branes indicates that the cytoskeleton forms compartments on the surface. (1) It has
also been recognized that the cytoskeleton of cell membranes maintains its cell
shape against external forces, and plays important roles in cell motion, deforma-
tion and in some other functions. The mechanical strength of the cell is considered
to be provided by cytoskeletons. Some artificial membranes are considered to have
skeletons, because they are partly polymerized. (2)

A well-known conventional model for such cell membranes is the curvature
model of Helfrich, Polyakov and Kleinert (HPK). (3,4,5) The cell membranes are
considered to be a two-dimensional surface in the HPK prescription, and therefore
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the two dimensional differential geometry is suited to describe the shape and their
corresponding properties. (6,7,8) However, the skeleton is not considered in those
curvature models.

Skeleton models for the cytoskeleton were investigated in Ref. 9. A hard-wall
and a hard-core potential were assumed on the polymer chains with junctions,
and the responses to some external stresses and the compression modulus were
extracted from the Monte Carlo (MC) simulation data. (9) The compartmentalized
structure was recently investigated in the framework of the HPK model. (10) A fluid
surface undergoes a phase transition due to the compartment.

However, phase transitions of skeleton surface models are yet to be studied.
The terminology skeleton surface model in this paper denotes a surface model
with skeletons; that is surface + skeleton, where the surface denotes the ordinary
two-dimensional surface and the skeleton denotes one-dimensional elastic chains
with junctions. It is expected that skeletons can make the surface smooth against
the surface fluctuations. Therefore it is interesting to see whether the crumpling
transition occurs in such skeleton surface models. The transition is the one that
has long been studied theoretically (11,12,13) and numerically (14,15,16,17,18,19,20,21) on
the basis of the HPK model, and an experimental investigation on the transition
has also been performed recently. (2)

We consider that the problem of whether the skeleton surface model under-
goes the phase transition or not is non-trivial. In fact, we know that one-dimensional
objects, such as an elastic ring obeying a Hamiltonian for the local interactions,
has no phase transition.

In this paper, we study the phase structure of a spherical skeleton surface
model, which is defined on a triangulated spherical surface with polymer chains
linked to each other at junctions, focusing on how the smooth phase separated from
the crumpled phase. The Hamiltonian is a linear combination of the Gaussian bond
potential S1, the one-dimensional bending energy S2 on the polymer chain, and
the two-dimensional bending energy SJ at the junctions.

The interaction in the model is not purely one-dimensional. One-dimensional
polymer chains have two-dimensional interactions through the two-dimensional
potential S1 and the two-dimensional bending energy SJ at the junctions, which are
considered to be the boundary of polymer chains. However, it is obvious that the
elastic skeletons maintain the shape of the surface, because triangulated surfaces
have no two-dimensional bending elasticity except at the junctions of skeletons.

We will find a first-order transition in the model under certain conditions
on the length of the polymer chains and the bending rigidity for SJ . Although
the model is allowed to self-intersect and, hence, phantom, our results indicate a
possible phase transition in biological or artificial membranes whose mechanical
strength is provided by the cytoskeletons.
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2. MODEL

The triangulated surfaces are characterized by N the total number of vertices,
NS the total number of vertices on the chains, NJ the total number of junctions, and
L the length of chains between junctions. Figures 1(a) and 1(b) show surfaces of
size (N , NS, NJ , L)= (2562, 600, 42, 6) and (N , NS, NJ , L)= (4002, 840, 42, 8),
respectively. They are assumed to be the starting configurations of the MC sim-
ulations. Thick lines denote the compartment boundary, which forms chains and
the junctions. All the vertices can fluctuate only locally, and they are prohibited
from diffusing because of the fixed connectivity nature of the lattice.

A triangulated surface of size N =10�2+2 (= the total number of vertices)
is obtained by dividing every edge of the icosahedron into � pieces of uniform
length; � is the edge length of triangles in the icosahedron. The configurations
are thus characterized by N5 =12 and N6 = N −12, where Nq is the total number
of vertices with co-ordination number q. Compartment structures are obtained
by dividing � further into m pieces (m =1, 2, . . .), and we have chains of the
uniform length L = (�/m)−2. The reason for the subtraction of −2 is because of
the junctions at the two end points of the chain. On the surfaces in Figs. 1(a) and
1(b), we have L =6, �=16 and L =8, �=20, respectively.

The compartment structures shown in Figs. 1(a) and (b) , are identical to those
of the model in Ref. 10 where the boundary bonds of the compartment were kept
unflipped in the dynamical triangulation. The boundary of compartment in Ref. 10
is identical with the linear chains with junctions in this paper. The junctions form
hexagons or pentagons; the total number of pentagon is 12 and the remaining
junctions are hexagons. The total number of the compartments depends on the
surface size N , and therefore, it is increased with increasing N . However, the

Fig. 1. Starting configurations of (a) (N , NS, NJ , L)= (2562, 600, 42, 6) and (b) (N , NS, NJ , L)=
(4002, 840, 42, 8), where N is the total number of vertices, NS is the total number of vertices on the
chains, NJ is the total number of junctions, and L is the length of chains between junctions. Thick
lines denote the compartment boundary, which forms chains and junctions.
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chain length L can be chosen to be constant and independent of N . We fix the
chain length L to the following two values:

L = 6, L = 8, (1)

which respectively correspond to the values n =21, n =36, the total number of
vertices inside a compartment. (10) The reason why we fix n is that the size of
compartment is considered to be finite and, thus, it is expected that total number
of lipids in the compartment also remains finite in the cell membranes. Note also
that n does not exactly correspond to the total number of lipids in a compartment
of cell membranes.

The Hamiltonian of the model is given by a linear combination of the Gaus-
sian bond potential S1, the one-dimensional bending energy S2, and the two-
dimensional bending energy SJ , which are defined by

S1 =
∑

(i j)

(
Xi − X j

)2
, S2 =

∑

(i j)

(
1 − cos θ(i j)

)
,

SJ =
∑

〈i j〉

(
1 − ni · n j

)
, (2)

where
∑

(i j) in S1 is the sum over the bond (i j) connecting the vertices i and j ,
and

∑
(i j) in S2 is the sum over bonds i and j , which contain not only bonds in the

chains but also bonds that connect the center of the junction and the neighboring
vertices of the chains. S1 is defined not only on the skeleton but also on the surface,
while S2 is defined only on the chains.

∑
〈i j〉 in SJ is the sum over triangles i and

j , which share the central point of the junction as the common vertex and form
a hexagonal or pentagonal junction. The symbol θ(i j) in S2 is the angle between
the bonds i and j , and ni in SJ is the unit normal vector of the triangle i at the
junctions.

Figure 2 shows a hexagonal junction linked to chains, the unit normal vectors
ni , n j , and the angle θ(i j), which is defined not only on the vertices of chains but
also on those nearest to the center of the junction.

We note that S1 includes bonds which are the boundary edges of the
hexagons (or the pentagons). The reason of this inclusion is for the sake of
an in-plane elasticity of surfaces at the junctions. If these bonds were excluded
from S1, chains would be able to freely move into the in-plane directions at the
junctions.

The partition function Z of the model is defined by

Z =
∫ ′ N∏

i=1

d Xi exp [−S(X )] , (3)

S(X ) = S1 + bS2 + bJ SJ ,
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θ(ij)

ni nj

θ(ij)

Fig. 2. A hexagonal junction linked to chains. The unit normal vector ni in SJ is defined on the triangle
i in the hexagon, and the angle θ(i j) in S2 is defined not only on the vertices of chains but also on those
nearest to the center of junction.

where b is the one-dimensional bending rigidity, bJ is the two-dimensional bending
rigidity at the junctions, and

∫ ′ denotes that the center of the surface is fixed. In
this paper, bJ is fixed to

bJ = 10, (4)

so that the junctions are sufficiently smooth. The value bJ =10 is relatively larger
than the first-order transition point bc �0.8 in the tethered surface model. (16,17)

Therefore, the hexagonal or pentagonal junctions are almost flat even when the
surface is in the crumpled phase at sufficiently small b.

Both b and bJ have units of kT , where k is the Boltzmann constant, and T
is the temperature. The surface tension coefficient a of S1 is fixed to a =1; this is
always possible because of the scale invariant property of the model. In fact, from
the expression aS1+bS2+bJ SJ we immediately understand that a =1 is possible,
because the factor a of S1 can be eliminated due to the scale invariance of the
partition function. Since the unit of a is (1/length)2, the length unit of the model
is given by

√
1/a. We use the unit of length provided by

√
1/a =1 in this paper,

although a can arbitrarily be chosen.
The difference between the model in this paper and the conventional tethered

surface model such as the one in(16) must be emphasized. The surface shape is
maintained by the two-dimensional bending energy defined all over the surface in
the conventional surface model. On the contrary, the surface shape of the model in
this paper is maintained by the one-dimensional S2 and two-dimensional SJ ; both
are defined only on the skeletons.
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3. MONTE CARLO TECHNIQUE

The canonical Metropolis technique is used to update the variable X . The
update of X is divided into two steps. The first is the update of X in the chains:
the X are shifted so that X ′ = X +δX , where δX is randomly chosen in a small
sphere. The new position X ′ is accepted with the probability Min[1, exp(−�S)],
where �S = S(new)−S(old). The second step involves the update of X in the
junctions, and this is further divided into three processes: the first is a random and
simultaneous shift of 7 (or 6) vertices of the hexagon (or the pentagon) including
the central vertex, and the second and the third are a random translation and a
random rotation of these vertices by assuming the hexagon (or the pentagon) to
be a rigid object. All of these MC processes are performed under about a 50%
acceptance rate, which is controlled by small numbers fixed at the beginning of the
simulations. We introduce the lower bound of 1 × 10−8 for the area of triangles.
No lower bound is imposed on the bond length.

We use surfaces of size (N , NS, NJ , L)= (2562, 600, 42, 6), (5762, 1350,
92, 6), (10242, 2400, 162, 6), and (16002, 3750, 252, 6) for the length L =6, and
(N , NS, NJ , L)= (4002, 840, 42, 8), (9002, 1890, 92, 8), and (16002, 3360, 162,

8) for the length L =8. A random number sequence called Mersenne Twister (22)

is used in the simulations.

4. RESULTS

First, we show snapshots of surface obtained at b=8.1 (smooth phase)
and b=8 (crumpled phase) in Figs. 3(a) and (b), respectively. The size of sur-
face is (N , NS, NJ , L)= (16002, 3750, 252, 6). The surface sections are shown
in Figs. 3(c), 3(d). We immediately find that the surface is smooth (crumpled) at
b=8.1 (b=8).

The surface size is reflected in the mean square size of X2, which is
defined by

X2 = 1

N

∑

i

(
Xi − X̄

)2
, X̄ = 1

N

∑

i

Xi , (5)

where X̄ is the center of the surface. We have X2 �101 and X2 �10.1 on the
surfaces in Figs. 3(a) and 3(b), respectively.

The Gaussian bond potential S1/N against b is shown in Figs. 4(a) and 4(b),
where the length L of chains between junctions are L =6 and L =8, respectively.
The surface size is N =5762, N =10242, and N =16002 for L =6, and N =4002,
N =9002, and N =16002 for L =8. The solid lines connecting the data are drawn
by a multihistogram reweighting technique. (23) Because of the scale invariant
property of the partition function, we have S1/N =3(N − 1)/2N �1.5. All of the
results presented in Figs. 4(a), 4(b) satisfy the expected relation.
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Fig. 3. Snapshot of the surface of size (N , NS, NJ , L)= (16002, 3750, 252, 6) obtained in the smooth
phase at (a) b=8.1 and in the crumpled phase at (b) b=8, both of which are close to the transition
point. The mean square sizes of X2 are (a) X2 �101 and (b) X2 �10.1.
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Fig. 4. The Gaussian bond potential S1/N vs. b obtained on the surfaces of (a) L =6 and (b) L =8.
S1/N is predicted to be S1/N �1.5. The two-dimensional bending rigidity bJ at the junctions was
fixed to bJ =10.
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Fig. 5. The mean square size of X2 versus b is obtained on the surfaces of (a) L =6 and (b) L =8. The
rigidity bJ was fixed to bJ =10. The curves are drawn by the multihistogram reweighting technique.

The mean square size of X2 versus b is plotted in Figs. 5(a) and 5(b), where
L =6 and L =8, respectively. The data was obtained on the same sized surfaces
as those in Figs. 4(a) and 4(b). The solid lines drawn on the data were obtained
by a multihistogram reweighting technique. We find a sharp change of X2 both in
Figs. 5(a) and 5(b) as N increases. This sharp change of X2 seems discontinuous
and hence indicates a first-order transition. We find also that the transition point
bc moves left on the b-axis as N increases in both cases (i.e., L =6 and L =8).
This implies that the finite-size effect still remained on large surfaces of size
N =16002. However, we should recall that the bending energy S2 is defined on
the chains of size NS =3750 and NS =3360, which are relatively small, on such
large surfaces. It is expected that more and more large surfaces are necessary to
remove the finite-size effect. We find also that the surface softens as the length
of chain increases. In fact, the transition point bc moves right on the b axis as L
increases from L =6 to L =8, as can be seen in Figs. 5(a) and 5(b).

It must be noted that a large surface in the collapsed phase hardly turns into
the smooth phase even at the transition point. This phenomenon seems typical to
surface simulations (16,17) based on the canonical MC simulation technique. When
a large surface configuration is once trapped in a potential minimum, the con-
figuration appears almost confined inside the potential valley. These troublesome
phenomena can be avoided with more sophisticated MC techniques. (24,25)

We also comment on the Hausdorff dimension H , which is defined by the
scaling relation X2 ∝ N 2/H and was not calculated explicitly. However, it is ob-
vious that H �2 is satisfied in the smooth phase close to the transition point,
because the spherical surfaces are swollen and smooth at that point as can be seen
in the snapshot of Figs. 3(a) and 3(c). Moreover, we expect that H is greater than
the physical bound H > 3 in the crumpled phase close to the transition point. In
fact, we find from Figs. 5(a) and 5(b) that X2 appears to remain unchanged as
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Fig. 6. The one-dimensional bending energy S2/N ′
S vs. b obtained on the surfaces of (a) L =6 and (b)

L =8.

N increases in the crumpled phase. This implies that H is very large and is in
contrast to that of the conventional tethered surface model in, (16,17) where H is
less than the physical bound in the crumpled phase.

The bending energy S2/N ′
S obtained on the surfaces of L =6 and L =

8 is shown in Figs. 6(a) and 6(b), where N ′
S = NS + 6NJ − 12 is the to-

tal number of vertices on which S2 is defined. We have N ′
S =5250 for the

surface of (N , NS, NJ , L)= (16002, 3750, 252, 6) and N ′
S =4320 for that of

(N , NS, NJ , L)= (16002, 3360, 162, 8). Although the data in the figures are con-
nected with smooth curves obtained by a multihistogram reweighting technique,
the discontinuous nature of S2/N ′

S is almost apparent.
The phase transition is not reflected in the two-dimensional bending energy

SJ . Since the corresponding bending rigidity bJ was chosen to make bJ =10 (as
shown in Eq. (4)), the junctions are maintained smooth enough. Therefore, SJ

defined on the junctions is kept small and exhibits only weak fluctuations.
On the other hand, it is possible to define a two-dimensional bending energy

S(2)
2 =

∑

〈〈i j〉〉

(
1 − ni · n j

)
(6)

on the surface, where ni is the unit normal vector of the triangle i , and
∑

〈〈i j〉〉
is the sum over all nearest neighbor triangles 〈〈i j〉〉 on the surface except at the
junctions. Although S(2)

2 is not included in the Hamiltonian, the transition can

be reflected in S(2)
2 . Figures 7(a) and 7(b) show S(2)

2 /NB against b obtained on
the surfaces of L =6 and L =8, where NB is the total number of bonds where
S(2)

2 is defined. Note that the bonds where S(2)
2 is undefined are those where SJ is

defined. We immediately find the expected behavior of S(2)
2 , which again indicates

a discontinuous transition.
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Fig. 7. The two-dimensional bending energy S(2)
2 /NB against b obtained on the surfaces of (a) L =6

and (b) L =8. S(2)
2 is defined by Eq. (6) and is not included in the Hamiltonian. NB is the total number

of bonds where S(2)
2 is defined.

The specific heat for S2 defined by

CS2 = b2

N ′
S

〈
(S2−〈S2〉)2 〉

(7)

has an anomalous behavior if the model has the phase transition. Figures 8(a) and
8(b) show CS2 against b obtained on the surfaces of L =6 and L =8. Sharp peaks
of CS2 are considered to be a sign of the phase transition.
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Fig. 8. The specific heat CS2 for S2 against b obtained on the surfaces of (a) L =6 and (b) L =8. CS2

is defined by Eq. (7). The error bars are the statistical error, which is obtained by the binning analysis.
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Fig. 9. The specific heat C
S

(2)
2

for S(2)
2 against b obtained on the surfaces of (a) L =6 and (b) L =8.

C
S

(2)
2

is defined by Eq. (8). The error bars are the statistical error, which is obtained also by the binning

analysis.

Another specific heat, which is the variance of S(2)
2 , can also be defined such

that

CS(2)
2

= 1

N ′

〈 (
S(2)

2 −〈
S(2)

2

〉)2
〉
, (8)

where N ′ = N − 6NJ + 12 is the total number of vertices N minus 6NJ − 12
the number of vertices nearest to the junctions. Figures 9(a) and 9(b) show CS(2)

2

against b obtained on the surfaces of L =6 and L =8. We find that CS(2)
2

has the
same anomalous behavior as that of CS2 in Figs. 8(a) and 8(b).

In order to see the scaling property of CS2 and CS(2)
2

, we plot the peak values

Cmax
S2

against N ′
S and Cmax

S(2)
2

against N ′ in Figs. 10(a) and 10(b), respectively, in a

log-log scale. The error bars on the peak values are the statistical errors, which
were obtained by the so-called binning analysis. The straight lines were drawn by
fitting the three largest data values to

Cmax
S2

∝ (
N ′

S

)σ1
, Cmax

S(2)
2

∝ (
N ′)σ2

, (9)

where σ1, σ2 are critical exponents. Thus, we have

σ1 = 1.27 ± 0.19, σ2 = 1.34 ± 0.11, (L = 6),

σ1 = 1.16 ± 0.13, σ2 = 1.12 ± 0.05, (L = 8). (10)

These values are slightly larger than σ =1, however, they are consistent with
the discontinuous transition, which was already expected by all of the above-
presented results.
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Fig. 10. Log-log plots of (a) Cmax
S2

against N ′
S and (b) Cmax

S
(2)
2

against N ′ obtained on the surfaces of

L =6 and L =8. The straight lines are drawn by fitting the largest three data of Cmax
S2

and Cmax

S
(2)
2

to
Eq. (9). The peak values and the statistical errors were obtained by multihistogram reweighting.

5. SUMMARY AND CONCLUSION

We have investigated phase transitions between the smooth phase and the
crumpled phase of a surface model with elastic chains joined to each other at
junctions by using the canonical Monte Carlo simulation technique. The model
is defined on uniformly triangulated spheres, which were obtained by splitting
the triangles of the icosahedron. A compartmentalized structure was built on the
surface, and the boundary of the compartment forms the skeletons, which have
a one-dimensional bending energy and maintain shape of the surface. No two-
dimensional bending energy is assumed on the surface except at the junctions. We
assumed a high elasticity at the junctions; bJ =10, and that the length L of chains
between junctions is relatively small; L =6 and L =8.

A first-order transition has been found. The bending energy S2 of the chains
and the two-dimensional bending energy S(2)

2 , which is not included in the Hamil-
tonian, are found to have a jump at finite b. The corresponding specific heats have
an anomalous peak, which is typical of a first-order transition. The mean square
size X2 also has a clear jump at the transition point, indicating that the transition
distinguishes the swollen (or smooth) phase from the collapsed (or crumpled)
phase.

The fact that a skeleton surface model has a phase transition is remarkable
because it is well-known that we can see no phase transition in one-dimensional
objects which are governed by a Hamiltonian for the local interactions. The elas-
ticity of the junctions are considered to be a reason for the phase transition. The
chains in our model share the two-dimensional Gaussian bond potential S1 and the
two-dimensional bending energy SJ at the boundaries, which are the junctions.
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However, the two-dimensional S1 seems to play no significant role in the transi-
tion, because a skeleton surface model with a one-dimensional bond potential also
undergoes a phase transition. (26) It is expected that the skeleton surface model has
a phase transition even without S1 as in HPK model. (17)

The phase structure of the skeleton surface model seems to be significantly
dependent on the junctions. Therefore, a skeleton surface model with rigid junc-
tions is interesting. A rigid junction is a junction that has not only the infinite
bending elasticity but also the infinite in-plane elasticity and, consequently, it is
different from the junctions in this paper, which have finite in-plane elasticity even
in the limit of bJ →∞. The fluid nature can also be incorporated in the skele-
ton surface model with the dynamical triangulation MC technique, and the phase
structure of the model seems to be changed. Many interesting points remain to be
studied in skeleton surface models.
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